An integrated circuit for chip-based analysis of enzyme kinetics and metabolite quantification.

Cheah, B. C., MacDonald, A., Martin, C., Streklas, A.J., Campbell, G., Al-Rawhani, M., Nemeth, B., Grant, J. , Barrett, M. and Cumming, D. (2015) An integrated circuit for chip-based analysis of enzyme kinetics and metabolite quantification. [Data Collection]

Collection description

We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 216 sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2 – 12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM – 231 mM, encompassing glucose’s physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.

Funding:
College / School: College of Medical Veterinary and Life Sciences > School of Infection and Immunity
College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Date Deposited: 19 Oct 2015 08:53
Enlighten Publications URL: http://eprints.gla.ac.uk/110941/
URI: https://researchdata.gla.ac.uk/id/eprint/225

Available Files

Data

Read me

Repository Staff Only: Update this record

Cheah, B. C., MacDonald, A., Martin, C., Streklas, A.J., Campbell, G., Al-Rawhani, M., Nemeth, B., Grant, J. , Barrett, M. and Cumming, D. (2015); An integrated circuit for chip-based analysis of enzyme kinetics and metabolite quantification.

University of Glasgow

DOI: 10.5525/gla.researchdata.225

Retrieved: 2024-10-31

Downloads

Downloads per month over past year