Reduced masses and frequency ratios Clear Clear["Global`*"] Factors Constants N[I] N[π] N[Pi] N[E] [c] = m/s c=299792458.; pi=3.14159265; (*N[Pi,9]*) invpi= 0.318309886; (*1/N[Pi,9]*) Prefix Transformation centi base2centi=10.^(2.); centi2base=10.^(-2.); milli base2milli=10.^(3.); milli2base=10.^(-3.); micro base2micro=10.^(6.); micro2base=10.^(-6.); nano base2nano=10.^(9.); nano2base=10.^(-9.); pico base2pico=10.^(12.); pico2base=10.^(-12.); femto base2femto=10.^(15.); femto2base=10.^(-15.); Kilo base2kilo=10.^(-3.); kilo2base=10.^(3.); Mega base2mega=10.^(-6.); mega2base=10.^(6.); Giga base2giga=10.^(-9.); giga2base=10.^(9.); Tera base2tera=10.^(-12.); tera2base=10.^(12.); Conversion factors Angular frequency transformations Angular frequency to frequency ([ω]= rad/s to [ν ] = 1/s = Hz) ω = 2πν ν = ω/(2π) rads2Hz= 1./(2.*pi); Angular frequency to wavenumbers ([ω]=rad/s to [Overscript[ν, ~]]= cm^-1) ω=2πν= 2π c Overscript[ν, ~] Overscript[ν, ~]=ω/(2π c) rads2wn= (1./(2.*pi*c))*(1./base2centi); Frequency transformations Frequency to wavenumber ([ν]=1/s=Hz to [Overscript[ν, ~]]= cm^-1) ν= c Overscript[ν, ~] Overscript[ν, ~]=ν/c Hz2wn=(1./c)*(1./base2centi); Frequency to angular frequency (Hz to rad/s) ω = 2πν Hz2rads= 2.pi; Wavenumber transformations Wavenumber to angular frequency (cm^-1 to rad/s) wn2rads=2.*pi*c * (1./centi2base) Wavenumber to frequency (cm^-1 to 1/s=Hz) wn2Hz= c* (1./centi2base); Formulas Harmonic oscillator For a harmonic oscillator, the oscillation frequency is given by ω=Sqrt[k/m], with k the force constant and m the mass. In a two particle system, the mass is replaced by the reduced mass, μ=(Subscript[m, 1]*Subscript[m, 2])/(Subscript[m, 1]+Subscript[m, 2]). To predict a frequency change from a change in the mass of the oscillator, the ratio of the frequencies can be used: Subscript[ω, A]/Subscript[ω, B]=Sqrt[Subscript[k, A]/Subscript[μ, A]]*Sqrt[Subscript[μ, B]/Subscript[k, B]]=Sqrt[Subscript[k, A]/Subscript[k, B]]*Sqrt[Subscript[μ, B]/Subscript[μ, A]] If the change in the force constant k is assumed to be insignificant, and as such Subscript[k, A] ≈ Subscript[k, B], this can be further simplified: Subscript[ω, A]/Subscript[ω, B]=Sqrt[Subscript[μ, B]/Subscript[μ, A]] redmass[m1RM_,m2RM_]:=(m1RM*m2RM)/(m1RM+m2RM); freqratio[rm1FR_,rm2FR_]:=Sqrt[rm2FR/rm1FR]; Phonon Optical at 0 k Assuming a cubic crystal lattice with two different sites, the equation of motion close to the limit of k=0 is: ω^2≈ 2C (1/Subscript[M, 1]+1/Subscript[M, 2]) The ratio for two different crystals, assuming similar force constants, is then: Subscript[ω, A]/Subscript[ω, B]≈Sqrt[1/Subscript[M, 1,A]+1/Subscript[M, 2,A]/1/Subscript[M, 1,B]+1/Subscript[M, 2,B]] freqratioPO0[m1aFRP_,m2aFRP_,m1bFRP_,m2bFRP_]:=Sqrt[((1/m1aFRP)+(1/m2aFRP))/((1/m1bFRP)+(1/m2bFRP))]; The acoustic phonon close to k=0 is nearly zero anyway due to a k vector dependence Optical at π k, zone boundary If we go to the Brillouin zone boundary for the same lattice, we find the motion to be: ω≈Sqrt[(2C)/Subscript[M, 2]] The ratio is then Subscript[ω, A]/Subscript[ω, B]≈Sqrt[Subscript[M, 2,B]/Subscript[M, 2,A]]if the force constants are similar. Subscript[M, 1] seems to be heavier usually, because then the phonon branches don't cross. So this would be simply the root of the ratio of the anion mass in our case? freqratioPOPI[m2aFRPP_,m2bFRPP_]:=Sqrt[m2bFRPP/m2aFRPP]; Acoustic at π k, zone boundary If we go to the Brillouin zone boundary for the same lattice, we find the motion to be: ω≈Sqrt[(2C)/Subscript[M, 1]] The ratio is then Subscript[ω, A]/Subscript[ω, B]≈Sqrt[Subscript[M, 1,B]/Subscript[M, 1,A]]if the force constants are similar We probably wouldn't see a shift in those then, because the heavier cations are extremely similar in mass. It would be in line with the fact that our methods should excite only the optical phonons in zerost approximation due to the interaction of the motion with the electrical field. Acoustic modes would not have the charge displacement to do that. Acoustic phonon in the middle goes to zero because of the k vector dependence. Masses Ion masses mCl=35.453; mBr=79.904; mBu4N=242.463; mBu3NMe=200.387; mBu3NH=186.357; mEt4N=130.25; mEt3NMe=116.227; mEt3NH=102.197; Sqrt[mCl/mBr] Sqrt[mBu3NMe/mBu3NH] Sqrt[mBu4N/mBu3NMe] Sqrt[mBu4N/mBu3NH] Sqrt[mEt3NH/mBu3NH] Sqrt[mEt3NMe/mBu3NMe] Sqrt[mEt4N/mBu3NH] Reduced masses muBu4NCl=redmass[mCl,mBu4N] muBu4NBr=redmass[mBr,mBu4N] muBu3NMeCl=redmass[mCl,mBu3NMe] muBu3NMeBr=redmass[mBr,mBu3NMe] muBu3NHCl=redmass[mCl,mBu3NH] muBu3NHBr=redmass[mBr,mBu3NH] muEt4NCl=redmass[mCl,mEt4N] muEt3NMeCl=redmass[mCl,mEt3NMe] muEt3NHCl=redmass[mCl,mEt3NH] Frequency Ratios Harmonic oscillator Anion Change Cl-Br frBu4N=freqratio[muBu4NCl,muBu4NBr] frBu3NMe=freqratio[muBu3NMeCl,muBu3NMeBr] frBu3NH=freqratio[muBu3NHCl,muBu3NHBr] 1/frBu3NMe 1/frBu3NH 1/frBu4N Cation Change Cl frClBu4NBu3NMe=freqratio[muBu4NCl,muBu3NMeCl] frClBu4NBu3NH=freqratio[muBu4NCl,muBu3NHCl] frClBu3NMeBu3NH=freqratio[muBu3NMeCl,muBu3NHCl] frClBu4NEt4N=freqratio[muBu4NCl,muEt4NCl] frClBu3NMeEt3NMe=freqratio[muBu3NMeCl,muEt3NMeCl] frClBu3NHEt3NH=freqratio[muBu3NHCl,muEt3NHCl] Actually took the inverses (divided by Bu4N frequency) bc I took the one that gave a ratio above 1, so divided by lower frequency. frClBu3NHBu4N=1/frClBu4NBu3NH frClBu3NMeBu4N=1/frClBu4NBu3NMe frClBu3NHBu3NMe=1/frClBu3NMeBu3NH frClEt4NBu4N= 1/frClBu4NEt4N frClEt3NMeBu3NMe=1/frClBu3NMeEt3NMe frClEt3NHBu3NH=1/frClBu3NHEt3NH Cation Change Br frBrBu4NBu3NMe=freqratio[muBu4NBr,muBu3NMeBr] frBrBu4NBu3NH=freqratio[muBu4NBr,muBu3NHBr] frBrBu3NMeBu3NH=freqratio[muBu3NMeBr,muBu3NHBr] Actually took the inverses (divided by Bu4N frequency) bc I took the one that gave a ratio above 1, so divided by lower frequency. frBrBu3NHBu4N=1/frBrBu4NBu3NH frBrBu3NMeBu4N=1/frBrBu4NBu3NMe frBrBu3NHBu3NMe=1/frBrBu3NMeBu3NH Frequency Ratios Phonons Zone boundary Anion Change Cl-Br Only one because cation mass change doesn't influence the ratio frzb=freqratioPOPI[mCl,mBr] 1/frzb Cation Change Cl Shouldn' t see the cation change bc anion, which should be the only determining factor, stays the same Cation Change Br Shouldn' t see the cation change bc anion, which should be the only determining factor, stays the same Frequency Ratios Phonons middle/0k Anion Change Cl-Br fr0kBu4N=freqratioPO0[mBu4N,mCl,mBu4N,mBr] fr0kBu3NMe=freqratioPO0[mBu3NMe,mCl,mBu3NMe,mBr] fr0kBu3NH=freqratioPO0[mBu3NH,mCl,mBu3NH,mBr] 1/fr0kBu3NH 1/fr0kBu4N 1/fr0kBu3NMe Cation Change Cl fr0kBu3NHBu4N=freqratioPO0[mBu3NH,mCl,mBu4N,mCl] fr0kBu3NMeBu4N=freqratioPO0[mBu3NMe,mCl,mBu4N,mCl] fr0kBu3NHBu3NMe=freqratioPO0[mBu3NH,mCl,mBu3NMe,mCl] fr0kEt4NBu4N=freqratioPO0[mEt4N,mCl,mBu4N,mCl] fr0kEt3NMeBu3NMe=freqratioPO0[mEt3NMe,mCl,mBu3NMe,mCl] fr0kEt3NHBu3NMH=freqratioPO0[mEt3NH,mCl,mBu3NH,mCl] 1/fr0kBu3NHBu4N 1/fr0kBu3NMeBu4N 1/fr0kBu3NHBu3NMe 1/fr0kEt4NBu4N 1/fr0kEt3NMeBu3NMe 1/fr0kEt3NHBu3NMH Cation Change Br fr0kBu3NHBu4N=freqratioPO0[mBu3NH,mBr,mBu4N,mBr] fr0kBu3NMeBu4N=freqratioPO0[mBu3NMe,mBr,mBu4N,mBr] fr0kBu3NHBu3NMe=freqratioPO0[mBu3NH,mBr,mBu3NMe,mBr] Force Constants The force constant of a motion (if approximated as a harmonic oscillator) can be calculated as k=mω^2 k1OVERk2[m1_,o1_,m2_,o2_]:=(m1* o1^2)/(m2* o2^2); Compare this to the intensity changes expected from the mass change after Subscript[μ, 01]^2=planck/2 1/(√m*k) (δμ/δq)^2=A which would be Subscript[A, Br]/Subscript[A, Cl]=√((Subscript[m, Cl] Subscript[k, cl])/(Subscript[m, Br] Subscript[k, Br])) Frequencies fABu3NHBr=38.46; fCBu3NHBr=121.18; fABu3NHCl=61.21; fCBu3NHCl=174.78; fABu3NMeBr=25.49; fCBu3NMeBr=77.62; fABu3NMeCl=45.14; fCBu3NMeCl=105.78; fABu4NBr=32.53; fCBu4NBr=84.47; fABu4NCl=47.13; fCBu4NCl=88.99; Amplitudes AABu3NHBr=0.97; ACBu3NHBr=0.56; AABu3NHCl=0.77; ACBu3NHCl=0.62; AABu3NMeBr=0.73; ACBu3NMeBr=0.33; AABu3NMeCl=0.66; ACBu3NMeCl=0.53; AABu4NBr=17.52; ACBu4NBr=0.46; AABu4NCl=7.26; ACBu4NCl=2.87; kCl/kBr - Reduced Mass Bu3NH kArmBu3NHCl=k1OVERk2[muBu3NHCl,fABu3NHCl,muBu3NHBr,fABu3NHBr] kCrmBu3NHCl=k1OVERk2[muBu3NHCl,fCBu3NHCl,muBu3NHBr,fCBu3NHBr] Bu3NMe kArmBu3NMeCl=k1OVERk2[muBu3NMeCl,fABu3NMeCl,muBu3NMeBr,fABu3NMeBr] kCrmBu3NMeCl=k1OVERk2[muBu3NMeCl,fCBu3NMeCl,muBu3NMeBr,fCBu3NMeBr] Bu4N kArmBu4NCl=k1OVERk2[muBu4NCl,fABu4NCl,muBu4NBr,fABu4NBr] kCrmBu4NCl=k1OVERk2[muBu4NCl,fCBu4NCl,muBu4NBr,fCBu4NBr] kCl/kBr - Anion Mass Bu3NH k1OVERk2[mCl,fABu3NHCl,mBr,fABu3NHBr] k1OVERk2[mCl,fCBu3NHCl,mBr,fCBu3NHBr] Bu3NMe k1OVERk2[mCl,fABu3NMeCl,mBr,fABu3NMeBr] k1OVERk2[mCl,fCBu3NMeCl,mBr,fCBu3NMeBr] Bu4N k1OVERk2[mCl,fABu4NCl,mBr,fABu4NBr] k1OVERk2[mCl,fCBu4NCl,mBr,fCBu4NBr] ABr/ACl Bu3NH measured AABu3NHBr/AABu3NHCl ACBu3NHBr/ACBu3NHCl theoretical - reduced mass Sqrt[(kArmBu3NHCl*(muBu3NHCl/muBu3NHBr))] Sqrt[(kCrmBu3NHCl*(muBu3NHCl/muBu3NHBr))] (kArmBu3NHCl*(muBu3NHCl/muBu3NHBr)) (kCrmBu3NHCl*(muBu3NHCl/muBu3NHBr)) theoretical - anion mass Sqrt[(kArmBu3NHCl*(mCl/mBr))] Sqrt[(kCrmBu3NHCl*(mCl/mBr))] (kArmBu3NHCl*(mCl/mBr)) (kCrmBu3NHCl*(mCl/mBr)) Bu3NMe measured AABu3NMeBr/AABu3NMeCl ACBu3NMeBr/ACBu3NMeCl theoretical - reduced mass Sqrt[(kArmBu3NMeCl*(muBu3NMeCl/muBu3NMeBr))] Sqrt[(kCrmBu3NMeCl*(muBu3NMeCl/muBu3NMeBr))] (kArmBu3NMeCl*(muBu3NMeCl/muBu3NMeBr)) (kCrmBu3NMeCl*(muBu3NMeCl/muBu3NMeBr)) theoretical - anion mass Sqrt[(kArmBu3NMeCl*(mCl/mBr))] Sqrt[(kCrmBu3NMeCl*(mCl/mBr))] (kArmBu3NMeCl*(mCl/mBr)) (kCrmBu3NMeCl*(mCl/mBr)) Bu4N measured AABu4NBr/AABu4NCl ACBu4NBr/ACBu4NCl theoretical - reduced mass Sqrt[(kArmBu4NCl*(muBu4NCl/muBu4NBr))] Sqrt[(kCrmBu4NCl*(muBu4NCl/muBu4NBr))] (kArmBu4NCl*(muBu4NCl/muBu4NBr)) (kCrmBu4NCl*(muBu4NCl/muBu4NBr)) theoretical - anion mass Sqrt[(kArmBu4NCl*(mCl/mBr))] Sqrt[(kCrmBu4NCl*(mCl/mBr))] (kArmBu4NCl*(mCl/mBr)) (kCrmBu4NCl*(mCl/mBr)) Comparison with Ludwig Paper Additional masses mCH3SO3=94.98; mCF3SO3=148.95; mNTf2=279.92; mC2mim=111.09; Frequencies fEt3NHCH3SO3=149.4; fEt3NHCF3SO3=128.9; fEt3NHNTf2=105.2; fC2mimNTf2=83.2; fBu3NHCl=174.78; fBu3NHCBr=121.18; fBu4NCl=88.99; fBu4NBr=84.47; Shifts zone center Assuming a cubic crystal lattice with two different sites, the equation of motion close to the limit of k=0 is: ω^2≈ 2C (1/Subscript[M, 1]+1/Subscript[M, 2]) The ratio for two different crystals, assuming similar force constants, is then: Subscript[ω, A]/Subscript[ω, B]≈Sqrt[1/Subscript[M, 1,A]+1/Subscript[M, 2,A]/1/Subscript[M, 1,B]+1/Subscript[M, 2,B]] freqratioPO0[m1aFRP_, m2aFRP_, m1bFRP_, m2bFRP_] := Sqrt[((1/m1aFRP) + (1/m2aFRP))/((1/m1bFRP) + (1/m2bFRP))]; Calculated freqratioPO0[mCH3SO3, mEt3NH,mCl, mBu3NH] freqratioPO0[mCF3SO3, mEt3NH,mCl, mBu3NH] freqratioPO0[mNTf2, mEt3NH,mCl, mBu3NH] freqratioPO0[mCH3SO3, mEt3NH,mBr, mBu3NH] freqratioPO0[mCF3SO3, mEt3NH,mBr, mBu3NH] freqratioPO0[mNTf2, mEt3NH,mBr, mBu3NH] freqratioPO0[mNTf2, mC2mim,mCl, mBu4N] freqratioPO0[mNTf2, mC2mim,mBr, mBu4N] freqratioPO0[mNTf2, mEt3NH,mCH3SO3, mEt3NH] freqratioPO0[mNTf2, mC2mim,mCH3SO3, mEt3NH] freqratioPO0[mNTf2, mEt3NH,mNTf2, mC2mim] Experimental Divide by lighter anion frequency fEt3NHCH3SO3/fBu3NHCl fEt3NHCF3SO3/fBu3NHCl fEt3NHNTf2/fBu3NHCl fEt3NHCH3SO3/fBu3NHCBr fEt3NHCF3SO3/fBu3NHCBr fEt3NHNTf2/fBu3NHCBr fC2mimNTf2/fBu4NCl fC2mimNTf2/fBu4NBr fEt3NHNTf2/fEt3NHCH3SO3 fC2mimNTf2/fEt3NHCH3SO3 fEt3NHNTf2/fC2mimNTf2 Shifts zone edge If we go to the brillouin zone boundary for the same lattice, we find the motion to be: ω≈Sqrt[(2C)/Subscript[M, 2]] The ratio is then Subscript[ω, A]/Subscript[ω, B]≈Sqrt[Subscript[M, 2,B]/Subscript[M, 2,A]]if the force constants are similar. Not quite sure how to assign Subscript[M, 1] and Subscript[M, 2,] though Subscript[M, 1] seems to be heavier usually, because then the phonon branches don't cross. So this would be simply the root of the ratio of the anion mass in our case? freqratioPOPI[m2aFRPP_, m2bFRPP_] := Sqrt[m2bFRPP/m2aFRPP]; Calculated freqratioPOPI[mCH3SO3, mCl] freqratioPOPI[mCF3SO3, mCl] freqratioPOPI[mNTf2, mCl] freqratioPOPI[mCH3SO3, mBr] freqratioPOPI[mCF3SO3, mBr] freqratioPOPI[mNTf2, mBr] freqratioPOPI[mNTf2, mCH3SO3] Experimental Divide by lighter anion frequency fEt3NHCH3SO3/fBu3NHCl fEt3NHCF3SO3/fBu3NHCl fEt3NHNTf2/fBu3NHCl fEt3NHCH3SO3/fBu3NHCBr fEt3NHCF3SO3/fBu3NHCBr fEt3NHNTf2/fBu3NHCBr fC2mimNTf2/fBu4NCl fC2mimNTf2/fBu4NBr fEt3NHNTf2/fEt3NHCH3SO3 fC2mimNTf2/fEt3NHCH3SO3 fEt3NHNTf2/fC2mimNTf2